Non deterministic polynomial optimization problems and their approximations
نویسندگان
چکیده
منابع مشابه
LP approximations to mixed-integer polynomial optimization problems
We present a class of linear programming approximations for constrained optimization problems. In the case of mixed-integer polynomial optimization problems, if the intersection graph of the constraints has bounded tree-width our construction yields a class of linear size formulations that attain any desired tolerance. As a result, we obtain an approximation scheme for the “AC-OPF” problem on g...
متن کاملDeterministic approximation algorithms for sphere constrained homogeneous polynomial optimization problems
Due to their fundamental nature and numerous applications, sphere constrained polynomial optimization problems have received a lot of attention lately. In this paper, we consider three such problems: (i) maximizing a homogeneous polynomial over the sphere; (ii) maximizing a multilinear form over a Cartesian product of spheres; and (iii) maximizing a multiquadratic form over a Cartesian product ...
متن کاملApproximations for Linear Tenth-order Boundary Value Problems through Polynomial and Non-polynomial Cubic Spline Techniques
Higher order differential equations have always been a tedious problem to solve for the mathematicians and engineers. Different numerical techniques were carried out to obtain numerical approximations to such problems. This research work presented and illustrated a novel numerical technique to approximate the tenth-order boundary value problems (BVPs). The techniques developed in this research ...
متن کاملGlobal Optimality Principles for Polynomial Optimization Problems over Box or Bivalent Constraints by Separable Polynomial Approximations∗
In this paper we present necessary conditions for global optimality for polynomial problems over box or bivalent constraints using separable polynomial relaxations. We achieve this by completely characterizing global optimality of separable polynomial problems with box as well as bivalent constraints. Then, by employing separable polynomial under-estimators, we establish sufficient conditions f...
متن کاملSemidefinite Approximations for Global Unconstrained Polynomial Optimization
We consider the problem of minimizing a polynomial function on R, known to be hard even for degree 4 polynomials. Therefore approximation algorithms are of interest. Lasserre [15] and Parrilo [23] have proposed approximating the minimum of the original problem using a hierarchy of lower bounds obtained via semidefinite programming relaxations. We propose here a method for computing tight upper ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Theoretical Computer Science
سال: 1981
ISSN: 0304-3975
DOI: 10.1016/0304-3975(81)90081-5